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A successive approximation procedure is presented for calculating transition amplitudes for direct and 
rearrangement collision processes. The essential feature of the method is that the base problem about which 
the solution is expanded exhibits all the bound states (of subsystems of particles) which appear in initial 
or final scattering states. While no proof is given that our expansion converges, arguments which have been 
presented indicating that the ordinary Born expansion diverges for a wide class of problems no longer apply 
to the expansion proposed here. A particular choice of base problem leads directly to the well-known dis
torted-wave Born approximation. The variational nature of this approximation is exhibited and, as a 
consequence of the general formalism, a procedure for systematic improvement is presented. Circumstances 
are described under which the first term in the modified Born expansion has an error of known sign. The use 
of separable potentials to generate solutions to the base problem is discussed and is shown, in the three-body 
case, to lead to a model proposed recently by Amado. As a by-product of our work a variational principle for 
transition amplitudes is developed which is a generalization of the Kohn principle for the two-body elastic 
amplitude and is valid for any scattering process described by the Schrodinger equation. 

1. INTRODUCTION 

THERE has been an increasing amount of attention 
turned recently toward the development of 

perturbational techniques for scattering problems when 
the ordinary Born expansion fails to converge.1"3 Since 
this failure is intimately connected with the presence of 
bound states the need for new techniques is particularly 
apparent in the treatment of rearrangement collisions,4 

where the presence of interaction potentials which are 
strong enough to form bound states is an intrinsic 
feature of the problem. Actually, the divergence of the 
Born expansion is more directly related to poles in the 
complex X plane, where A is the potential strength 
parameter, rather than to poles in the complex energy 
plane, and a rigorous mathematical study of the problem 
must take this distinction into account.2 Our aims here 
are more modest. We present a modification of the Born 
expansion which at least avoids the Aaron-Amado-Lee 
criticism.4 No convergence proofs are offered. We rely 
solely on the expectation that if a potential is too weak 
to cause binding an expansion about that potential 
will converge over a wide range of energies. The 
possibility that the potential may still be strong enough 
to cause a resonance (a pole in the complex X plane) is 
recognized but not discussed further here. 

The basis of our method is an identity developed by 
Kato6,6 for two-body scattering in a particular partial 
wave and here extended to deal with transition matrix 

* Supported by the National Science Foundation. 
i S. Tani, Phys. Rev. 117, 252 (1960). 
2 S . Weinberg, Phys. Rev. 130, 776 (1963); 131, 440 (1963); 

133, B232 (1964). 
3 M. Rotenberg, Ann. Phys. (N. Y.) 21, 579 (1963). 
4 R. Aaron, R. D. Amado, and B. W. Lee, Phys. Rev. 121, 319 

(1961). 
5 T . Kato, Progr. Theoret. Phys. (Kyoto) 6, 394 (1951). 
6 L. Rosenberg and L. Spruch, Phys. Rev. 125, 1407 (1962). 

The Kato identity was generalized here to cover binary collision 
processes, the system having a well-defined total angular momen
tum. A minimum principle for elements of the K matrix was then 
constructed. This paper contains references to earlier work by 
the authors along similar lines. 

elements in general £see Eq. (2.23)3- An essential 
feature of the Kato identity, which is maintained in the 
generalization developed here, is that one term in the 
identity is explicitly of second order so that its neglect 
gives rise to a variational principle for the transition 
matrix elements. The distorted-wave Born expansion is 
derived in Sec. 3 for two-body scattering. This formula
tion may be viewed as an alternative to Weinberg's 
method of quasiparticles.2 A generalization of the 
formalism is discussed in Sec. 4, along with two applica
tions. We first consider a three-body scattering problem 
and construct a solvable base problem by making a 
particular choice of separable potentials to replace the 
true potentials. This base problem turns out to be 
identical to a model proposed recently by Amado.7 

We are therefore able to justify Amado's model in the 
framework of ordinary potential scattering theory and, 
at the same time, to give a procedure for systematic 
improvement of this first approximation. As a second 
application we show that the well-known stripping 
approximation8 Ce.g., for a (d,p) reaction] can by a 
suitable choice of distorted wave be made to appear as 
the first term in a distorted-wave Born expansion. We 
have therefore exhibited the variational nature of the 
stripping (or distorted-wave Born) approximation, and 
this is perhaps the best way to understand its success. 
This success in turn may be taken as some indication 
that the expansions discussed here will be of practical 
utility in a variety of applications. 

Of the two applications discussed in Sec. 4 one is 
specifically a three-body problem while the other, the 
stripping example, is effectively reduced to a three-body 
problem by the introduction of optical potentials. It 
may well be that the requirement of a solvable compar
ison problem limits the domain of applicability of the 
method proposed here to two- and three-body models. 
This point does, however, deserve further investigation; 

7 R. D. Amado, Phys. Rev. 132, 485 (1963). 
8 S. T. Butler, Nuclear Stripping Reactions (John Wiley & Sons. 

Inc., New York, 1957). 
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the shell model, e.g., might serve as a useful comparison 
problem for nucleon-nucleus scattering.9 In any event, 
we have chosen to use a many-body model in the 
derivation of the basic identity given in Sec. 2. We 
believe this identity, and the variational principle which 
follows directly from it, to be of general interest, 
independent of the particular applications discussed 
here. 

2. THE BASIC IDENTITY 

The multichannel scattering problem under consider
ation is defined by the Schrodinger equation 

(H-E)*a
(±) = 0 (2.1) 

with boundary conditions which specify the particular 
entrance channel and whether the scattered wave is 
outgoing ( + ) or incoming (—) at infinity. In order to 
write down these boundary conditions in a convenient 
form we must introduce some notation. 

Consider a system of n bodies (each body may itself 
be a compound system) with masses mi and position 
vectors q* locating the center of mass of each body. 
We introduce a new set of position vectors ri, x% 
- - - rn_i and Q according to 

r*= ( M * A 0 1 / 2 [ < 1 I + I - Q i ] , i = 1, 2, • • • » - 1 , 

Q = Q W , (2.2) 

where 
3 3 

Q ; = ( E *»iq,)/]£ w», y = l , 2, • • • » , (2.3) 

and 

W - M ^ - H - C E w y ) - 1 i = l , 2 , . . . « - l . (2.4) 
i = i 

Here m is some conveniently chosen standard mass. 
In the following unless otherwise stated we make a 
choice of units, and of m, such that fi2=2m=l. The 
kinetic energy operator for the n bodies in their center-
of-mass system then takes the simple form 

K=- E V , 2 . (2.5) 
*=»i 

A further notational simplification is achieved by 
representing the set of vectors ri, r2, • • • rw_i by a single 
vector r = (xh x2, • • -X3U_i)) in a 3(^—1) dimensional 
space with 

3(n- l ) 

f2= E ^ 2 - (2.6) 
i= i 

If k is a wave number vector in this space then we have 
the plane-wave solution 

(K-k2)exp(<ik-r) = 0. (2.7) 
9 Ideas along these lines have been discussed recently by W. M. 

MacDonald, University of Maryland Technical Report No. 337, 
November 1963 (unpublished). 

The spherically symmetric solutions of Eq. (2.7) will 
also be required. They are given by 

p=3n-5, (2.8) 

where Hp/2
(1) and Hp/2

{2) are cylindrical Hankel func
tions of the first and second kind, respectively. The 
normalization factors C± are specified in Eqs. (Al l ) 
and (A13). We note the asymptotic behavior 

/ 2 Y'2 

Xexp ±i\ kr-( \ r 1 . (2.9) 

Now suppose each body is actually a bound system 
of pi particles; when isolated each system is described 
by a normalized eigenfunction Xi(gil} $i2, • • -QiPi) with 
eigenenergy— a. (If the ith. system is a single particle, 
then Xi= 1 and e t=0.) The 9^ are position vectors with 
respect to the center of mass of the ^th system. The 
totality of these vectors can be represented by a hyper-
space vector 9. The wave function for the ^-body 
system (consisting of 

n 

particles) is of the form 

( I I *ia) exp(ikaT«) = X«(p«) exp(tk a-r a) 
1 = 1 

E E $ a ( 9 a j r a ) , (2.10) 

where we have now included a channel index a. $a 

satisfies the Schrodinger equation 

(H-Va-E)$a=0, (2.11) 
where 

E=-ea+kJ, ea= E eia. (2.12) 
*=i 

The channel index a indicates the quantum state of 
the system as well as the particular decomposition into 
na subsystems. Va is the set of interactions" which would 
actually exist among these systems for ra finite. The 
asymptotic form of the wave function can now be 
written as 

^ ( ± ) - ^ ^ ( ^ , ^ ) + r a / ± ) ( r a , ^ ) X a ( 9 a ) ^ a ( ± ) ( r a ) (2.13) 

for ra—> 00, p a<oo ? the carets denoting unit vectors. 
The scattering problem resolves itself into a determina
tion of the amplitudes Tap. 

With these preliminaries disposed of we are in 
position to derive the generalized Kato identity. To this 
end consider the expression 

/ = (¥„<->, [ # - £ > ^ + > ) 

- (¥*<+>, [ H - £ > « ( - ) ) * , (2.14) 
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where ^ ( + ) is a trial function which has the same 
asymptotic form as ^ r

/s
(+) except that the amplitudes 

Ta0
(+) are replaced by trial amplitudes Tapt

(+) (the 
functions Xa are assumed to be known). Now / , which 
represents the lack of Hermiticity of H under the 
assumed boundary conditions, may be evaluated in 
two ways. We have, of course, 

Alternatively, a multidimensional form of Green's 
theorem may be used to express / as an integral over 
a surface at infinity. In fact it is clear from the preceding 
discussion that the total center-of-mass kinetic energy 
operator can be written as —V2, where V2 is a multi
dimensional Laplacian, so that 

/= 
J s 

This integral may be evaluated with the aid of Eq. 
(2.13). We first observe that terms involving products 
of X7* and X&, where y and 8 are two channels which 
correspond to different groupings of particles into 
subsystems, do not contribute since there will be no 
surface element at infinity on which X7* and Xs 
overlap. Stated in another way, we may say that as a 
necessary condition for a term proportional to Xy*X$ to 
contribute, channels y and 5 must be such that they can 
be connected by a direct reaction (for which ny=n$) 
or a breakup reaction (for which ny5*n$) but not a 
rearrangement reaction. More detailed considerations 
show that in fact only terms for which ny=ns can 
contribute. This analysis, which we now sketch, is 
greatly simplified by use of the identity 

/.[ exp(^k-r)—U^{k,r)p)-U^(k,r',p) 
dr 

X—exp(ik-r) \f(r)dS—> / (=F*), (2.16) 
dr J r^°° 

where the integral is taken over a hypersphere of radius 
r. This relation, a direct generalization of its three-
dimensional counterpart given by Dirac,10 is derived in 
the Appendix. The essential point is that due to the 
rapid oscillations of the integrand there is no contribu
tion unless the coefficient of r appearing in the exponent 
is zero. 

Now consider the class of terms obtained by replacing 
*«<->* in Eq. (2.15) by <£a*, with ^<+> replaced by 
TaptXyUy

(+K I t will be shown that such terms do not 
contribute unless ny=na. Thus, if we first assume that 
na<ny we see that since Xa(ga) vanishes for large pa 

the surface integral becomes an integral over all 
coordinates except ra, which is fixed and large. 

10 P. A. M. Dirac, The Principles of Quantum Mechanics 
(Clarendon Press, Oxford, 1947), 3rd ed., p. 191. 

Furthermore, the error made in replacing ry by ra in 
the function Uy

(+) will be 0{r<rl) relative to the 
leading term. This leading term itself vanishes as ra 

tends to infinity, since it contains a finite factor, 
evaluated with the aid of Eq. (2.16), multiplied by an 
attenuation factor which, according to Eqs. (2.8) and 
(2.9), is just ra~

3[ny~na]l2. For na=ny the contribution is 
— Tapt

{+) (ka,kp), where we have used the orthonormality 
property of the functions Xa. Finally, if na>ny the 
integral is taken over the surface ry = constant. Now we 
may write 

exp(ika»ra) = exp(ikai-r7) exp(Aa2»97), (2.17) 
where 

Ea= ~ e«+ (kai
2+ka2

2). 

€y~\ Ky J^a • (2.18) 

Since ea<ey (channel a is, so to speak, obtained from 
channel 7 by a breakup reaction), while &«22>0, we 
have 

ka2
2-ea>-~ey (2.19) 

so that kai
2<ky

2. Consequently, the equality kai«r7 

= kyry cannot be satisfied in the domain of integration 
and the surface integral vanishes due to the rapid 
oscillations of the integrand for r 7 - ^ » . In a similar 
way the contribution obtained by replacing ^r^^* by 
its scattered part and >I^ ( + ) by its plane-wave part 
reduces to 2n^Q;

(~)*( — kp, —ka). By extension of this 
analysis it is easy to see that these are the only contribu
tions so that 

- (*«( -> , [ # - E ] > V + ) ) . (2.20) 

As a first application of Eq. (2.20) we set ^ ( + ) = ^r
/8

(+), 
which leads directly to the well-known reciprocity 
relation11 

7 W - > * ( - ^ , - & « ) = 7 V + > ( £ a , ^ ) . (2.21) 

It can now be verified that the amplitudes Ta$ as 
defined by Eq. (2.13) are identical to the usual T-matrix 
elements.11 We set ^ ( + ) = $/? in Eq. (2.20), so that 
? W + ) = 0, and find, with the aid of Eq. (2.21), that 

= (*«, TW+>). (2.22) 

With the introduction of the error function 12a
(±) 

= ^ r
a i

( ± ) — ̂ r« ( ± ) , Eq. (2.20) takes the form we have been 
seeking, that is, 

- ( 0 « < - \ [ # - £ W + > ) . (2.23) 

A variational principle for Tap is obtained by dropping 
the second-order term, (Qj~\ [ # - . E ] S V + ) ) , in Eq. 
(2.23). An integral (Schwinger-type) formulation of the 
variational principle for rearrangement collisions has 

11 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 
(1963). 



B940 L E O N A R D R O S E N B E R G 

been given previously by Lippmann.12 The above 
differential (Kohn-type13) formulation should prove to 
be more tractable in practical applications. Further
more, it is more general than earlier multichannel 
formulations of the variational principle6'12,13 in that 
no restriction to two-body channels is made. No 
essential difficulties are encountered when the effects 
of spin and the Pauli principle are included. 

3. TWO-BODY SCATTERING 

The identity given in Eq. (2.23) is a useful starting 
point for a number of investigations. The construction 
of minimum principles by bounding the error term in a 
version of the identity in which the integrals are real 
has been discussed previously.6 We wish to show here 
that interesting relations can be derived by setting the 
trial function equal to the exact solution of an appro
priately chosen problem. Consider, for example, a 
single-channel two-body scattering problem. We write 
the central potential as V(r)=Vo(r)-\-Vi(r) where 
Vo(r) is a solvable potential, and choose for the trial 
function ^ ( r ) the exact solution ^ ( r ) of 

(Ho-E)*o(r)^(-V>+Vo(r)-E)*o(r) = 0. (3.1) 

If the scattering amplitude for this base problem is 
denoted by /0(k/,kt-), we have 

Tafiti+)(h,h)=-4*fofa&) • (3.2) 

To find an expression for the error function in terms of 
solutions to the base problem we introduce the operator 

G ( * ) = ( * - f l ) - 1 

and write the operator relation 

^<±) = ^ 0 ( ± ) + G ( E ± ^ ) 7 i ^ 0
( ± ) , 

(3.3) 

where ( r | , S r ( ± ) )=^ r ( ± ) ( r ) is the correct wave function. 
With Go defined as 

it follows that 
Go(«)=(a - f l 0 ) - 1 , 

G=Go+G 0 7 iG, 

(3.5) 

(3.6) 

which is a convenient basis for perturbation theory if 
Vi is weak enough. From Eq. (3.4) we have 

S2(±> = * 0
( ± ) - * ( ± ) = -G(E±iV)Vi*0

(±), (3.7) 
so that 

(G/->, [jy-E]G<<+>) 

= - { G ( E - i v ) V i * o / ~ \ [ # - £ ] * o * ( + ) } 
= - (¥v<->, ViG(E+i*,)V&oiM), (3.8) 

where we have used the relation G1* (z) = G (z*). A scatter
ing operator 7 \ is now defined as 

2V±) (E) = F i + V1G(E±iy]) Vi, (3.9) 

i2 B. A. Lippmann, Phys. Rev. 102, 264 (1956). 
is W. Kohn, Phys. Rev. 74, 1763 (1948). 

so that the identity [Eq. (2.23)] becomes 

- 47r/(k/,k<) = - 4TT/0 (k/,k<) 

+ (^o/ (- ) ,r1C+)^oi ( + )). (3.10) 

A distorted-wave Born expansion is obtained by iterat
ing Eq. (3.6) for G and combining that expansion with 
Eqs. (3.9) and (3.10). 

To illustrate the utility of Eq. (3.10) we consider, 
in the remainder of this section, two particular choices 
for the potential VQ. Suppose V supports N bound 
states. I t is assumed, in this first example, that each 
bound-state wave function X* is known exactly. The 
condition we place on VQ is that it be solvable, and that 
it produce the same bound states as F , so that 

V&^VXi, t = l , 2 , ---N. (3.11) 

I t is easily verified that if VQ is taken as the sum of 
separable potentials 

Vo= E VlXiXY-^falV, 

where V is an NXN matrix with elements 

tV=<x<|F|x,>, 

(3.12) 

(3.13) 

then Eq. (3.11) is satisfied. The scattering problem 
generated by Vo is easily solved and we just state the 
solution here. We introduce the function 

#(k) = <k|7|x,> (3.14) 

and define the NXN matrices N<*>(£) and D(£) 
according to 

(3.4) [ N ^ ( £ ) ] y - 1 = 
dsk f«(k)fo(k) 

(2*)* (k2+ei)(k
2-E=FiTi) (3.15) 

23 < y (£ )= (£+ e < )8 y . 

The operator r 0
( ± ) , which satisfies 

ZV*' (£) = V0+ F 0 G o ( £ ± ^ ) Vo, (3.16) 

may then be expressed as 

<k|7V±>0E)|k'> 

= E fc(k)£N<=0(iOD-'Oe)]^') • (3.17) 

This representation exhibits the expected analytic 
properties of the amplitude. In particular, the poles 
agree, in position and residue, with those of the true 
amplitude. One can then express /0 , ^o, and Go, which 
enter in Eqs. (3.6) and (3.10), in terms of T0

(±)(E); 
these well-known details are omitted here. Since the 
bound-state poles are included in /0 , the convergence 
properties of the distorted-wave Born expansion of the 
residual amplitude [see Eq. (3.10)] is expected to be 
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substantially improved compared to the usual Born 
series. 

The fact that V and Vo generate identical bound 
states has the following interesting consequence. It is 
clear that the error function, 12=^0—-^, is orthogonal 
to each of the X{ (note that VQ is Hermitian). Therefore, 
at zero energy the error term in the basic identity, 
Eq. (2.23), is of known sign,14 i.e., 

(O,ffi2)£0, E=0. (3.18) 

Thus, with the above choice of VQ, the distorted-wave 
Born approximation, obtained from Eq. (3.10) by 
replacing 7\ with Fi, gives an upper bound on the 
scattering length A defined by 

i4 = - l im/(k / ,k i) . (3.19) 

This may be viewed as the generalization of the 
previously obtained result15 that the ordinary Born 
approximation provides an upper bound on the scatter
ing length if no bound states exist. 

Upper bounds on scattering lengths can be obtained 
even if the bound-state wave functions are not known 
exactly. This follows from a theorem16 which states that 
if N bound states exist and if H is an NXN matrix 
with elements 

Hi^{Xit\H\Xjt), (3.20) 
then the operator 

Hx=H-i H\xit)(R-%(xjt\H (3.21) 

is nonnegative on the space of functions which vanish 
(or at most go like a constant14) at infinity. Here the 
linearly independent set of trial bound-state functions 
must be chosen such that H is negative definite. Taking 
the expectation value of Ht with respect to the error 
function, and use of the zero-energy form of Eq. (2.21), 
leads to the desired bound. Scattering by compound 
systems can be treated in a similar way.6 

The theorem just quoted can be of help in the present 
problem. If, as is usually the case, the bound-state wave 
functions are not known exactly the choice VQ=H—HX 
is suggested. The scattering problem thus generated 
has the solution 

<kl7V±>(£)|k'> 

= E ^(k)[H+M(±)(E)] , r^(kO, (3.22) 

with 
A<(k) = <k|#|x«>, 

r d*k ^(k)Ay(k) 
Mi^KE)- / " • (3.23) 

J (2TT)3 &2-£=Fw? 
14 The fact that Q goes as a constant for large r, rather than 

vanishes does not alter this conclusion. This point has been 
discussed in detail in Ref. 15. 

16 L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959). 
16 L. Rosenberg, L. Spruch, and T. F. O'Malley, Phys. Rev. 

118, 184 (1960). 

It will no longer be true, in general, that /0 correctly 
reproduces the bound-state poles of / . Nevertheless, we 
can be assured that the residual potential Vi can not 
support a bound state, since K+Vi=Hi is positive 
definite. As we have already mentioned, this does not 
guarantee that the modified Born expansion will 
converge, since the presence of positive energy reso
nances as well as bound states can destroy the conver
gence of the Born series. The method outlined above 
"subtracts off" only the bound states. This is expected 
to suffice over a broad range of energies sufficiently 
removed from resonance regions. 

4. MULTICHANNEL SCATTERING 

The discussion in Sec. 3 can be taken over directly 
to construct a distorted-wave Born expansion for the 
general scattering problem treated in Sec. 2. The basic 
identity may be written as 

V + ) = W + ) + ( * a a ( - \ ZV+>0E)¥o*
c+)), (4.1) 

where ^o/3C±) is denned as the solution of 

(H0-E)*op(±) = 0, (4.2) 

and satisfies boundary conditions given by Eq. (2.13) 
with Tap replaced by T0ap. Again, the residual potential 
Vi is denned by 

H= H0+ Vx= K+ V0+ Vi (4.3) 

and 2Y+)(£) is given formally by Eqs. (3.9) and (3.3). 
VQ should be chosen so that Vi is relieved of the burden 
of reproducing any of the bound states, either of the 
total system, or of subsystems in entrance or exit 
channels; i.e., these bound states should appear in the 
base problem. Clearly, the construction of a solvable 
base problem is a more formidable task in the many-
body case. Rather than attempting a general discussion 
of this point at the present time, we consider two special 
cases which should illustrate the utility of this approach. 

We consider first a three-body scattering problem. 
The problem is greatly simplified if the three particles 
are taken to be identical. This case is treated here; the 
case where the particles are not identical will be 
discussed in a future report.17 

In Ref. 17 we have established integral equations for 
three-body scattering amplitudes which have the 
feature that the kernels involve two-body scattering 
operators rather than two-body potentials. Iteration 
of these integral equations leads to the multiple scatter
ing expansions discussed by Watson18 and others. 
When the three particles are identical the integral 
equations are particularly simple. Before quoting them 
we introduce some notation. Suppose the two-body 
potential V supports one bound state, with momentum-
space wave function x(k) and binding energy e. The 
entrance channel is chosen to be such that two particles 

17 L. Rosenberg (to be published). 
i8 K. M. Watson, Phys. Rev. 105, 1388 (1957). 
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are bound and the third particle has momentum k^ in 
the center-of-mass frame (we let fi2=2m~l, where m 
is the mass of each particle.) The exit channel is 
similarly chosen; the free particle has momentum k/ 
with k/^ki2. The scattering amplitude corresponding 
to total energy E~^k?—e is written as 

r ( k / , k < ; £ ) = J ? ( k / , k , ; £ ) + r ( k / > k , ; £ ) . (4.4) 

Here the Born term is 

B(k / , k , ; £ ) = g ( k / + | k < ) x ( k i + i k J ) 

g(k/+ik,)g(kd-ik/) 

continued off the energy shell by writing 

g(*k/+k') 
x(ik/+k') = 

E-ik'+kfY-k't-kf 
(4.11) 

E-(kd-k/ ) s - fc*-V' 
(4.5) 

with g(k) defined by Eq. (3.14). The second form of 
Eq. (4.5) is to be used to extend the Born amplitude 
off the energy shell. The amplitude r is defined in 
terms of the two-body scattering operator T(E) which 
itself satisfies 

T(E)=V+V(E+irj-~K)~1T(E). (4.6) 

In the impulse approximation the elastic amplitude is 

d*k 
/ ( k / , k i ; £ ) = 2 

(2TY 
-*(ik/+k) 

X<k/+ik| T(E-IW)! k;+|k)x(Jkrf k) (4.7) 

and the breakup amplitude [three particles free in the 
final state, with momenta k/, k / , and — ( k / + k / ) ] is 

/(k / ,k/;k i;£)=2x(ik,+k/) 
X ( k / + | k / | r ( E - W 2 ) | ^ + J V ) . (4.8) 

The time-reversed amplitude / ( k / ; k»-,k/; E) (three 
particles free in the initial state) is obtained from Eq. 
(4.8) with the aid of the reciprocity relation, Eq. (2.21). 
The integral equations determining r in Eq. (4.4) can 
now be written as 

T(k/,k.-;E) 
r dzk r dzk! 

= J ( k / , k < ; £ ) + I 7 — / - — / ( k / ; k ' , k ; E ) 
J (2TT)3J (2TT)3 

XlE+iri- ( k + k ' ) 2 - * 2 - * ' 2 ] - 1 

X r ( k J k , ; k , ; £ ) , (4.9) 
and 

r ( k / , k / ; k » ; £ ) 
r an 

= /(k / ,k/ ;k, . ;£)+2/ — 
J (2TT 

x < k / + i k / | r ( E - p / 2 ) | k + | k / ) 

X [ £ + ^ - (k+k/)2-&2- V2]"1 

X r ( k / , k ; k , ; E ) . (4.10) 

As in the case of the Born amplitude, r(k/,kz-; E) may be 

in Eq. (4.9) and varying kf
2 with E fixed. 

Having set up the equations which determine the 
exact amplitude we now introduce a base problem by 
replacing V with 

V\xXx\v 
F „ = — , 4.12 

(x\V\x) 

which is Eq. (3.12) specialized to the case N=l. 
According to Eq. (3.17) the two-body scattering 
operator TQ(+)(E) is given by19 

1 S(k)g(k') 
<k|ZV+>(E)|k'> = — S<+>(£) (4.13) 

with 

[S (+)(£)]" 
1 r dH 

~2J (2w 

2 E+e 

g2(k) 
(2x)3 (2k2-E-iv)(2k*+e) 

(4.14) 

We then see that 

Io(kf,ki]E) 

and 

T0(k/,ki;£) 

d*k 5 ( + ) ( £ - p 2 ) 
- — J 3 (k /?k; E) B (k,k,; E) 
(2*)' ~ — 

d3& 
= /o(k/,k<; E)+ f £(k,,k; E) 

J (2x)3 

^ ( +) ( J E_p 2 ) 

x _ T0(k,k i ; E). (4.15) 
£ - P 2 + 6 

Finally, the amplitude 7*0(k/,kt-;£) becomes, for this 
choice of separable potential, 

r0(lv,k.-;£) 

= B(k,,k,;E) + 
d3£ 

x-

•J5(k/,k;£) 

• r 0 (k ,k , ;E) . (4.16) 

(2x) 

5(+)(E-p2) 

E - P 2 + e 

This solution may be verified by comparing Eqs. (4.16) 
and (4.15), each iterated once, and making use of the 
defining relation Eq. (4.4). With the elastic amplitude 
known the inelastic amplitudes can be obtained directly; 
no other integral equations need be solved. We find that 

19 We have changed our notation and units somewhat in this 
section in order to facilitate subsequent comparison with results of 
Ref. 7. 
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the breakup amplitude is given by 

r0(k/,k/;ki;£) 

-W 
5'+)(£-fV2) 

g(k/+*k/) „ , r0(k/M; E) 
- 2 « r 

(4.17) 

where S indicates a sum over all permutations of final 
momenta. The amplitude ^T(k/-,k/,k,-,k/;E), which 
describes the collision in which the three particles are 
free in initial and final states, can be decomposed into a 
sum of disconnected parts, each describing a two-body 
collision with the third particle unaffected, and the 
remaining connected part T0 which contains the 
essential three-body aspect of the problem. This 
connected amplitude reduces, in the base problem 
introduced above, to 

^ ( k ^ k / M / j E ) 

1 r S^(E~W2) 1 
•=-* «(k/+lV) — — r 0 ( k / ; M / ; £ ) . 

12 L E-W2+e J 

(4.18) 

Diagrammatic representations of all these equations 
can easily be constructed. Such diagrams appear in 
Ref. 7, as well as in an earlier paper which dealt with 
the construction of a unitary impulse approximation.20 

The similarity between the present model and the 
unitary impulse approximation will be discussed in 
more detail in the future.17 

The integral equation for To is no more difficult to 
solve than the Lippmann-Schwinger equation for the 
two-body scattering amplitude. Eq. (4.16) has been 
derived previously by Amado7 who used techniques not 
based on ordinary potential scattering theory. The 
virtue of the present derivation is twofold. Firstly, the 
connection between Amado's techniques and ordinary 
potential theory is exhibited; we have produced the 
potential which generates Amado's model. Secondly, 
systematic corrections to this first approximation can 
be obtained from Eq. (4.1) using a (presumably con
vergent) distorted-wave Born expansion. Generaliza
tions of the model to deal with certain stripping ampli
tudes have been suggested by Amado.7 These general
izations can also be treated by the techniques described 
here. 

I t may be of interest to observe that the solvable 
model discussed by Skornyakov and Ter-Martirosyan,21 

in which three identical particles interact by means of 
two-body zero-range potentials, appears as a special case 
of the base problem discussed above. We need ony 
replace g(k) by its zero-range limit, which is just a 

20 L. Rosenberg, Phys. Rev. 131, 874 (1963). 
21 G. V. Skornyakov and K. A. Ter-Martirosyan, Zh. Eksperim. 

i Teor. Fiz. 31, 775 (1957) [English transl.: Soviet Phys.—JETP 
4, 648 (1957)]; see also, L. D. Faddeev, ibid. 39, 1459 (1960) 
[English transl.: ibid. 12, 1014 (1961)]. 

constant. This is equivalent to replacing %(r) by its 
asymptotic form. 

As another illustration of these techniques we con
sider a deuteron stripping reaction X(d,f)Y, where X is 
the ground state of a target nucleus. Particle c in the 
deuteron is captured by X to form F, the nucleon / 
acting as a "spectator." The basic assumption made8 is 
that in a pure stripping reaction the process depends 
solely on the interaction VCf between particles c and / , 
and then only when c is outside the nucleus X. That is, 
let the total potential V= Vx/+ Vc/+ Vcx be replaced 
by 

VQ= VXf+Vc£e(rQ-re)+6(re-R)l+Vcx, (4.19) 

where rc is the separation of c and X, e(x) is the step 
function 

e(x) = 0, x<0 

= 1, x>0, 
(4.20) 

and r0 is the radius of nucleus X. The term VCfe(rc— R) 
is inserted so that for rc>R (with R2>r0) the potential 
is switched on, allowing the formation of the deuteron 
in the entrance channel. The statement of the stripping 
approximation is then 

Oa/3 ' <o, (4.21) 

where T0a(3 is the stripping amplitude associated with 
the potential Vo. Since all the bound states in entrance 
and exit channels are present in the base problem as 
well as the true problem, it is reasonable to suppose that 
the distorted-wave Born expansion about the residual 
potential V\= V— Vo is convergent. If we keep only 
the first term in the expansion the stripping amplitude 
Ta$ becomes 

Tafi~T0ap+ (^0a
(~), LVcfe(rc-r0)e(R-rcm0^) 

« (¥««<->, [ F c / e ( r c ~ r 0 ) ] ^ ( + ) ) , (4.22) 

where we have used Eq. (4.21) and have taken R large 
enough so that e(R—rc) is effectively unity. The 
distorted waves ^ o * ^ and ^0^ ( + ) can be computed 
with the aid of elastic and inelastic scattering data 
(with stripping ignored) for the processes d on X and 
/ o n F. 

While the result expressed by Eq. (4.22) is well 
known, the above derivation has, in addition to its 
simplicity, two distinct advantages. Firstly, the 
variational nature of the result is displayed, since the 
term neglected in the first line of Eq. (4.22) is of second 
order as can be seen by comparison with Eq. (2.23). 
This formal property, along with the expectation that 
the errors ^ a

( - ) - ^ r
0 a

( ~ ) and ^ ( + ) — ^ 0 ^ ( + ) will in fact 
be small in a pure stripping reaction, is perhaps the 
explanation for the "surprising" success of Eq. (4.22) 
in practical applications. Another virtue of the present 
derivation is that it indicates a systematic method of 
improving the approximation or testing its validity by 
looking at additional terms in the presumably covergent 
distorted-wave Born expansion. 
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APPENDIX 

L E O N A R D R O S E N B E R G 

We now write 

v=kr(l+cosd) y 

f(r) = g(v/kr) 
(A6) 

We shall derive Eq. (2.16) of the text; we first 
consider the function £/(+), given by Eq. (2.8), and 
replace H(1) by its asymptotic form given by Eq. (2.9). 
The normalization constant C+ in Eq. (2.8) is specified (suppressing the dependence of g on the angle variables 
below. <Pi) so that 

To treat the surface integral we introduce (following 
Sommerfeld22) a set of hyperspherical coordinates j ^_ ( p_ 1 ) / 2 fUr

 v(P-i)i2eiv(2-v/kryp+i)i2 
defined in terms of the Cartesian coordinates X{, by J \ / J 

Xg(v/kr)dv+0(l/r). (A7) Xi=rcosd 

X2=r sin0 cos^i 

%z—r sin0 sin^i cos^2 

Xp+i=r sin0 sm<pi sin<pr • -sin^p-i c o s ^ 

xp+2=r sin0 sin^i s i n ^ - • - s i n ^ - i sin<pp, 

By applying the mean value theorem to each of the 
f-dependent factors in the integrand we see that we may 

(Al) *e t r~~> °° m the integrand, the error being 0 ( l / r ) . 
Therefore, in the limit of infinite r, le becomes 

where p+2 is the dimensionality of the space. The 
orientation of the coordinate system is chosen such that 
k is along the x± axis. The surface integral in Eq. (2.16) 
then becomes 

Ie = 2^+»i2g{0)ik-Uv-vw / v(p-i)!*eivdv 
Jo 

(A8) 

1/2 

C+f — ) exp{ - i ( ^ > + l V / 4 } / dwv 
\kir/ J Jo 

sinP0^fP+1 

/ d r 1 
X I exrj{ikr cos0}— 

drLr(p+l)/2 
exv)(ikr) ikr)~\ 

Thus Eq. (2.16), with the upper sign chosen, is verified 
provided C+ is chosen such that 

C+(2A7r)1/2(-i)^+1) /20^2i(2/^)^-1>/2 

X r [ ( ^ + 1 ) / 2 ] = 1 , (A9) 
where22 

1 d \ 
exp(ikr)—(exp{ikr cos0}) \f{f) 3 

r(P+l)/2 dr 
(A2) 

with 

= / d w v = 2w-
(#+D/2 

"(p<l&<P<L' <fcô ,= / s inp~Vi^^i / sinp" 
J 0 Jo 

X / sirupv_id<pp-.i / i ^ . 

We first examine the integral over 0, 

Jo 

which reduces to 

^ = ^rp+v-(P+i/2) / s i n ^ ^ exp{iifer(l+cos0)} 
J 0 

r[(/>+D/2] 

This simplifies to 

C + = T T ^ ( V 2 ) P / 2 [ 2 « ( / » + 1 ) ] - : 

(A10) 

(AH) 

(The significance of this normalization is that U{+) 

(A3) (k,r; p) satisfies the unit source condition, i.e., 

/ 

d?7<+> 
-d<r= 1. 

dr 
(A12) 

(A4) 
where the integration is taken over a sphere of radius 
r—>0.) Equation (2.16) can be verified for the lower 
sign by choosing 

CL= -7r1/2(k/2y^27ri(p+ l ) J - i = C + * (A13) 

so that £/"<+>*= U(~K If we now take the complex 
X ( l — c o s 0 ) / ( r ) [ l + O ( l A ) ] . (A5) conjugate of Eq. (2.16), with the upper sign chosen, 

22 A. Sommerfeld, Partial Diferential Equations (Academic a n d transform X to - r in the integrand we obtain the 
Press Inc., New York, 1949), p. 227. stated result, which completes the proof. 


